Chińscy naukowcy dokonują kwantowego skoku w komputerach z Chinami-komputer kwantowy 中國 科學家 在 計算 中國 量子 計算機 方面 做出 了 巨大 的 的

Chinese scientists have built world’s first quantum computing machine that goes beyond the early classical — or conventional — computers, paving the way to the ultimate realization of quantum computing beating classical computers.   Scientists announced their achievement at a press conference in the Shanghai Institute for Advanced Studies of University of Science and Technology of China on Wednesday.   On a laboratory table of about three square meters, the “baby” quantum computer, made up of hundreds of components, has nothing in common with computers used in daily life.   “Although it cannot even beat the mobile phone in your hands, it’s a great leap for the quantum computer, which one day could outperform conventional computers,” said Pan Jianwei, an academician of the Chinese Academy of Sciences and a leading quantum physicist.   QUANTUM SUPREMACY   Pan’s team expects to construct a quantum computer as powerful as a common laptop by the end of this year, and aims to construct one that will exceed the most powerful supercomputer currently by 2020.   “A key period for the development of quantum computing is coming. This is like bamboo shoots popping out after the rain,” Pan said.   Many scientists believe quantum computing could in some ways dwarf the processing power of today’s supercomputers. One analogy to explain the concept of quantum computing is that it is like being able to read all the books in a library at the same time, whereas conventional computing is like having to read them one after another.   Pan said quantum computing exploits the fundamental quantum superposition principle to enable ultra-fast parallel calculation and simulation capabilities.    In normal silicon computer chips, data is rendered in one of two states: 0 or 1. However, in quantum computers, data could exist in both states simultaneously, holding exponentially more information.   The computing power of a quantum computer grows exponentially with the number of quantum bits that can be manipulated. This could effectively solve large-scale computation problems that are beyond the ability of current classical computers, Pan said.    For example, a quantum computer with 50 quantum bits would be more powerful in solving quantum sampling problems than today’s fastest supercomputer, Sunway TaihuLight, installed in the National Supercomputing Center of China.   Due to the enormous potential of quantum computing, Europe and the United States are actively collaborating in their research. High-tech companies, such as Google, Microsoft and IBM, also have massive interests in quantum computing research.   Chinese scientists are exploring three technical routes: systems based on single photons, ultra-cold atoms and superconducting circuits.    Recently, Pan Jianwei and his colleagues — Lu Chaoyang and Zhu Xiaobo, of the University of Science and Technology of China, and Wang Haohua, of Zhejiang University — set two international records in quantum control of the maximal numbers of entangled photonic quantum bits and entangled superconducting quantum bits.    Pan explained that manipulation of multi-particle entanglement is the core of quantum computing technology and has been the focus of international competition in quantum computing research.    In the photonic system, his team has first achieved the first 5, 6, 8 and 10 entangled photons in the world and is at the forefront of global developments.   Pan said quantum computers could, in principle, solve certain problems faster than classical computers. Despite substantial progress in the past two decades, building quantum machines that can actually outperform classical computers in some specific tasks — an important milestone termed “quantum supremacy” — remains challenging.    In the quest for quantum supremacy, Boson sampling, an intermediate (that is, non-universal) quantum computer model has received considerable attention, as it requires fewer physical resources than building universal optical quantum computers, Pan said.   Last year, Pan and Lu Chaoyang developed the world’s best single photon source based on semiconductor quantum dots. Now, they are using the high-performance single photon source and electronically programmable photonic circuit to build a multi-photon quantum computing prototype to run the Boson sampling task.   The test results show the sampling rate of this prototype is at least 24,000 times faster than international counterparts, according to Pan’s team.    At the same time, the prototype quantum computing machine is 10 to 100 times faster than the first electronic computer, ENIAC, and the first transistor computer, TRADIC, in running the classical algorithm, Pan said.   It is the first quantum computing machine based on single photons that goes beyond the early classical computer, and ultimately paves the way to a quantum computer that can beat classical computers. This achievement was published online in the latest issue of Nature Photonics this week.   In the superconducting quantum circuit system, a research team from Google, NASA and the University of California at Santa Barbara announced a high-precision manipulation of 9 superconducting quantum bits in 2015.Now the Chinese team led by Pan, Zhu Xiaobo and Wang Haohua have broken that record. They independently developed a superconducting quantum circuit containing 10 superconducting quantum bits and successfully entangled the 10 quantum bits through a global quantum operation.   The reviewer for Nature Photonics commented that the Chinese scientists’ experimental work was of high quality and high impact. Physics World, a journal of the British Institute of Physics, said Chinese physicists had taken the lead in the race to couple increasing numbers of superconducting qubits.   INFINITE POSSIBILITY   During the initial development of the conventional computer from the 1940s to the 1970s, Europe and the United States took the lead. But in the new wave of quantum computing, China already has a leading edge in some fields.   An article titled “Quantum computers ready to leap out of the lab in 2017” was published in Nature at the beginning of this year. It said quantum computing had long seemed like one of those technologies that were 20 years away, and always would be. But 2017 could be the year that the field sheds its research-only image.   Quantum computers could potentially change modern life. For instance, if applied in public security, quantum computing would be able to instantly scan a global face image database of 6 billion people and identify an individual in real time.   In public transport, quantum computing would be able to instantly analyze and identify complicated traffic conditions, enabling transport systems to avoid traffic jams.   Scientists could use quantum computers to study how human consciousness arises, and create unimaginably powerful artificial intelligence, or search for earth-like planets in the universe.    Quantum computing is also expected to enable more accurate weather forecasting, as well as solve difficult problems in code-cracking, pharmaceutical design and financial analysis.    Chinese scientists have grand plans. They aim to realize manipulation of 20 entangled photons by the end of this year, and will try to design and manipulate 20 superconducting quantum bits.
中國科學家已經建立了世界上第一個超越早期古典或常規計算機的量子計算機,為量子計算的最終實現打敗了古典計算機鋪路。科學家星期三在中國科技大學上海高等研究院新聞發布會上宣布成就。在大約三平方米的實驗台上,由數百種組件組成的“寶貝”量子計算機與日常生活中使用的計算機無關。中國科學院院士潘建偉,領先的量子物理學家潘建偉說:“儘管手機無法擊敗手機,但對於量子計算機來說,這是一個巨大的飛躍,有一天可能會超越常規電腦。” QUANTUM SUPREMACY潘的團隊期望在今年年底之前構建一個像普通筆記本電腦一樣強大的量子計算機,目標是在2020年之前構建一個超過最強大的超級計算機的量子計算機。“開發量子計算的關鍵時期是這就像筍在雨後爆發出來的,“潘說。許多科學家認為,量子計算在某種程度上可以使當今超級計算機的處理能力下降。解釋量子計算概念的一個類比是,它能夠同時讀取一個庫中的所有書籍,而常規計算就像一個接一個地讀取它們。潘說,量子計算利用了基本的量子疊加原理來實現超快速並行計算和仿真功能。在普通的矽計算機芯片中,數據呈現為兩種狀態之一:0或1.然而,在量子計算機中,數據可以同時存在於兩個狀態,保持指數更多的信息。量子計算機的計算能力隨著可以操縱的量子位數而呈指數增長。潘先生說,這可以有效地解決超出現有經典電腦能力的大規模計算問題。例如,擁有50個量子位的量子計算機在解決量子採樣問題方面將比現在最快的超級計算機Sunway TaihuLight安裝在中國的國家超級計算中心更為強大。由於量子計算的巨大潛力,歐洲和美國正在積極合作進行研究。像Google,微軟和IBM這樣的高科技公司也對量子計算研究有很大的興趣。中國科學家正在探索三條技術路線:基於單光子,超冷原子和超導電路的系統。最近,潘建偉及其同事 – 中國科技大學的盧朝陽,朱曉波,浙江大學的王浩華,設計了量子控制中最大糾纏光子量子位數的兩個國際記錄並纏繞超導量子位。潘解釋說,多粒子糾纏的操縱是量子計算技術的核心,一直是量子計算研究國際競爭的焦點。在光子系統中,他的團隊首先實現了世界第一,第五,第六,第八和第十個糾纏光子,並處於全球發展的前列。潘說,量子計算機原則上可以比傳統的計算機更快地解決某些問題。儘管過去二十年取得了實質性的進展,但在某些特定任務中構建量子計算機實際上可能勝過經典計算機 – 這個稱為“量子優勢”的重要里程碑仍然是具有挑戰性的。潘說,在追求量子優勢的過程中,Boson採樣是一種中間體(即非通用的)量子計算機模型,受到相當大的關注,因為物理資源比構建通用光學量子計算機要少。去年,潘和盧朝陽開發出了基於半導體量子點的世界上最好的單光子源。現在,他們正在使用高性能單光子源和電子可編程光子電路來構建一個多光子量子計算原型來運行Boson採樣任務。測試結果顯示,該原型機的採樣率比國際同行高出至少24,000倍。 Pan同時表示,原型量子計算機比第一台電子計算機ENIAC和第一台晶體管電腦TRADIC的運算速度快10到100倍。它是基於單光子的第一個量子計算機,超越了早期的古典計算機,最終為可以擊敗古典計算機的量子計算機鋪平了道路。這個成就在本週最新一期的“自然光子學”雜誌上發表。
Zhōngguó kēxuéjiā yǐjīng jiànlìle shìjiè shàng dì yīgè chāoyuè zǎoqí gǔdiǎn huò chángguī jìsuànjī de liàngzǐ jìsuànjī, wèi liàngzǐ jìsuàn de zuìzhōng shíxiàn dǎbàile gǔdiǎn jìsuànjī pūlù. Kēxuéjiā xīngqísān zài zhōngguó kējì dàxué shànghǎi gāoděng yán jiù yuàn xīnwén fābù huì shàng xuānbù chéngjiù. Zài dàyuē sān píngfāng mǐ de shíyàn tái shàng, yóu shù bǎi zhǒng zǔjiàn zǔchéng de “bǎobèi” liàngzǐ jìsuànjī yǔ rìcháng shēnghuó zhōng shǐyòng de jìsuànjī wúguān. Zhōngguó kēxuéyuàn yuànshì pānjiànwěi, lǐngxiān de liàngzǐ wùlǐ xué jiā pānjiànwěi shuō:“Jǐnguǎn shǒujī wúfǎ jíbài shǒujī, dàn duìwū liàngzǐ jìsuànjī lái shuō, zhè shì yīgè jùdà de fēiyuè, yǒu yītiān kěnéng huì chāoyuè chángguī diànnǎo.” QUANTUM SUPREMACY pān de tuánduì qīwàng zài jīnnián niándǐ zhīqián gòujiàn yīgè xiàng pǔtōng bǐjìběn diànnǎo yīyàng qiángdà de liàngzǐ jìsuànjī, mùbiāo shì zài 2020 nián zhīqián gòujiàn yīgè chāoguò zuìqiángdà de chāojí jìsuànjī de liàngzǐ jìsuànjī.“Kāifā liàngzǐ jìsuàn de guānjiàn shíqí shì zhè jiù xiàng sǔn zài yǔhòu bàofā chūlái de,“pān shuō. Xǔduō kēxuéjiā rènwéi, liàngzǐ jìsuàn zài mǒu zhǒng chéngdù shàng kěyǐ shǐ dāngjīn chāojí jìsuànjī de chǔlǐ nénglì xiàjiàng. Jiěshì liàngzǐ jìsuàn gàiniàn de yīgè lèibǐ shì, tā nénggòu tóngshí dòu qǔ yīgè kù zhōng de suǒyǒu shūjí, ér chángguī jìsuàn jiù xiàng yīgè jiē yīgè de dòu qǔ tāmen. Pān shuō, liàngzǐ jìsuàn lìyòngle jīběn de liàngzǐ diéjiā yuánlǐ lái shíxiàn chāo kuàisù bìngxíng jìsuàn hé fǎngzhēn gōngnéng. Zài pǔtōng de xì jìsuànjī xīnpiàn zhōng, shùjù chéngxiàn wèi liǎng zhǒng zhuàngtài zhī yī:0 Huò 1. Rán’ér, zài liàngzǐ jìsuànjī zhōng, shùjù kěyǐ tóngshí cúnzài wū liǎng gè zhuàngtài, bǎochí zhǐshù gèng duō de xìnxī. Liàngzǐ jìsuànjī de jìsuàn nénglì suízhe kěyǐ cāozòng de liàngzǐ wèi shù ér chéng zhǐshù zēngzhǎng. Pān xiānshēng shuō, zhè kěyǐ yǒuxiào de jiějué chāochū xiànyǒu jīngdiǎn diànnǎo nénglì de dà guīmó jìsuàn wèntí. Lìrú, yǒngyǒu 50 gè liàngzǐ wèi de liàngzǐ jìsuànjī zài jiějué liàngzǐ cǎiyàng wèntí fāngmiàn jiāng bǐ xiànzài zuì kuài de chāojí jìsuànjī Sunway TaihuLight ānzhuāng zài zhōngguó de guójiā chāojí jìsuàn zhōngxīn gèng wéi qiáng dà. Yóuwū liàngzǐ jìsuàn de jùdà qiánlì, ōuzhōu hé měiguó zhèngzài jījí hézuò jìnxíng yánjiū. Xiàng Google, wēiruǎn huo IBM zhèyàng de gāo kējì gōngsī yě duì liàngzǐ jìsuàn yánjiū yǒu hěn dà de xìngqù. Zhōngguó kēxuéjiā zhèngzài tànsuǒ sāntiáo jìshù lùxiàn: Jīwū dān guāngzǐ, chāo lěng yuánzǐ hé chāo dǎo diànlù de xìtǒng. Zuìjìn, pānjiànwěi jí qí tóngshì – zhōngguó kējì dàxué de lú zhāoyáng, zhūxiǎobō, zhèjiāng dàxué de wánghàohuá, shèjìle liàngzǐ kòngzhì zhōng zuìdà jiūchán guāngzǐ liàngzǐ wèi shǔ de liǎng gè guójì jìlù bìng chánrào chāo dǎo liàngzǐ wèi. Pān jiěshì shuō, duō lìzǐ jiūchán de cāozòng shì liàngzǐ jìsuàn jìshù de héxīn, yīzhí shì liàngzǐ jìsuàn yánjiū guójì jìngzhēng de jiāodiǎn. Zài guāngzǐ xìtǒng zhōng, tā de tuánduì shǒuxiān shíxiànle shìjiè dì yī, dì wǔ, dì liù, dì bā hé dì shí gè jiūchán guāngzǐ, bìng chǔwū quánqiú fāzhǎn de qiánliè. Pān shuō, liàngzǐ jìsuànjī yuánzé shàng kěyǐ bǐ chuántǒng de jìsuànjī gèng kuài dì jiějué mǒu xiē wèntí. Jǐnguǎn guòqù èrshí nián qǔdéle shí zhí xìng de jìnzhǎn, dàn zài mǒu xiē tèdìng rènwù zhōng gòujiàn liàngzǐ jìsuànjī shíjì shang kěnéng shēng guò jīngdiǎn jìsuànjī – zhège chēng wèi “liàngzǐ yōushì” de zhòngyào lǐchéngbēi réngrán shì jùyǒu tiǎozhàn xìng de. Pān shuō, zài zhuīqiú liàngzǐ yōushì de guòchéng zhōng,Boson cǎiyàng shì yīzhǒng zhōngjiān tǐ (jí fēi tōngyòng de) liàngzǐ jìsuànjī móxíng, shòudào xiāngdāng dà de guānzhù, yīnwèi wùlǐ zīyuán bǐ gòujiàn tōngyòng guāngxué liàngzǐ jìsuànjī yào shǎo. Qùnián, pān hé lú zhāoyáng kāifā chūle jīwū bàndǎotǐ liàngzǐ diǎn de shìjiè shàng zuì hǎo de dān guāngzǐ yuán. Xiànzài, tāmen zhèngzài shǐyòng gāo xìngnéng dān guāngzǐ yuán hé diànzǐ kě biānchéng guāngzǐ diànlù lái gòujiàn yī gè duō guāngzǐ liàngzǐ jìsuàn yuánxíng lái yùnxíng Boson cǎiyàng rènwù. Cèshì jiéguǒ xiǎnshì, gāi yuánxíng jī de cǎiyàng lǜ bǐ guójì tóng háng gāo chū zhìshǎo 24,000 bèi. Pan tóngshí biǎoshì, yuánxíng liàngzǐ jìsuànjī bǐ dì yī tái diànzǐ jìsuànjī ENIAC hé dì yī tái jīngtǐguǎn diànnǎo TRADIC de yùnsuàn sùdù kuài 10 dào 100 bèi. Tā shì jīwū dān guāngzǐ de dì yī gè liàngzǐ jìsuànjī, chāoyuèle zǎoqí de gǔdiǎn jìsuànjī, zuìzhōng wèi kěyǐ jíbài gǔdiǎn jìsuànjī de liàngzǐ jìsuànjī pū píngle dàolù.

Chińscy naukowcy dokonują kwantowego skoku w komputerach z Chinami-komputer kwantowy 中國 科學家 在 計算 中國 量子 計算機 方面 做出 了 巨大 的 的

| PRP Channel |